Invariant Sets with Zero Measure and Full Hausdorff Dimension
نویسندگان
چکیده
For a subshift of finite type and a fixed Hölder continuous function, the zero measure invariant set of points where the Birkhoff averages do not exist is either empty or carries full Hausdorff dimension. Similar statements hold for conformal repellers and two-dimensional horseshoes, and the set of points where the pointwise dimensions, local entropies, Lyapunov exponents, and Birkhoff averages do not exist simultaneously.
منابع مشابه
Cardinal Invariants Associated with Hausdorff Capacities
Let λ(X) denote Lebesgue measure. If X ⊆ [0, 1] and r ∈ (0, 1) then the r-Hausdorff capacity of X is denoted by H(X) and is defined to be the infimum of all ∑ ∞ i=0 λ(Ii) r where {Ii}i∈ω is a cover of X by intervals. The r Hausdorff capacity has the same null sets as the r-Hausdorff measure which is familiar from the theory of fractal dimension. It is shown that, given r < 1, it is possible to ...
متن کاملMeasures and Dimensions of Julia Sets of Semi-hyperbolic Rational Semigroups
We consider the dynamics of semi-hyperbolic semigroups generated by finitely many rational maps on the Riemann sphere. Assuming that the nice open set condition holds it is proved that there exists a geometric measure on the Julia set with exponent h equal to the Hausdorff dimension of the Julia set. Both h-dimensional Hausdorff and packing measures are finite and positive on the Julia set and ...
متن کاملUniversal Measure Zero, Large Hausdorff Dimension, and Nearly Lipschitz Maps
We prove that each analytic set in R contains a universally null set of the same Hausdorff dimension and that each metric space contains a universally null set of Hausdorff dimension no less than the topological dimension of the space. Similar results also hold for universally meager sets. An essential part of the construction involves an analysis of Lipschitzlike mappings of separable metric s...
متن کاملBi - Invariant Sets and Measureshave Integer Hausdorff
Let A; B be two diagonal endomorphisms of the d-dimensional torus with corresponding eigenvalues relatively prime. We show that for any A-invariant ergodic measure , there exists a projection onto a torus T r of dimension r dim , that maps-almost every B-orbit to a uniformly distributed sequence in T r. As a corollary we obtain that the Hausdorr dimension of any bi-invariant measure, as well as...
متن کاملFractal Dimensions and Von Neumann Algebras
Using Voiculescu’s notion of a matricial microstate we introduce fractal dimensions and entropy for finite sets of self-adjoint operators in a tracial von Neumann algebra. We show that they possess properties similar to their classical predecessors. We relate the new quantities to free entropy and free entropy dimension and show that a modified version of free Hausdorff dimension is an algebrai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997